SmoothL1¶
Description¶
A loss function that is a combination of MAE and MSE error functions. It is differentiable at zero, unlike MAE, and not as sensitive to outliers as MSE.
It is used in regression tasks.
The error function formula is:
S =
\begin{cases}
\frac{1}{2}(y-y^p)^2 & \quad \text{if } |y-y^p| < 1\\
|y-y^p| - \frac{1}{2} & \quad \text{if } |y-y^p| \geq 1
\end{cases}
where
N - number of objects in the sample;
y - real value of the object;
y^p - predicted value for the object.
Initializing¶
def __init__(self):
Parametrs
-
Explanations
-
Examples¶
Necessary imports:
import numpy as np
from PuzzleLib.Backend import gpuarray
from PuzzleLib.Cost import SmoothL1
Info
gpuarray
is required to properly place the tensor in the GPU.
is required to properly place the tensor in the GPU.
targets = gpuarray.to_gpu(np.random.randn(10, 10).astype(np.float32))
predictions = gpuarray.to_gpu(np.random.randn(10, 10).astype(np.float32))
Important
Please remember that the first dimension of target and prediction tensors is the size of the batch .
Initializing the error function:
smooth = SmoothL1()
Calculating the error and the gradient on the batch:
error, grad = smooth(predictions, targets)